
SARS-CoV-2 virus in Raw Wastewater from Student Residence Halls with concomitant 1 

16S rRNA Bacterial Community Structure changes 2 

Y. Li1, K. T. Ash1,2, D. C. Joyner1,2, D. E. Williams1, T. C. Hazen1,2,3,4,5* 3 

 4 

1Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, USA 5 

2Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA 6 

3Department of Microbiology, University of Tennessee, Knoxville, TN, USA 7 

4Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA 8 

5Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, USA 9 

* Correspondence:  10 

Terry C. Hazen 11 

tchazen@utk.edu 12 

Keywords: SARS-CoV-2, COVID-19, Raw Sewage, 16S rRNA, Bacterial Community Structure 13 

Word count:  14 

Figures: 15 (Not include the Figure S1) 15 

Tables: 2 16 

Author Contributions:  17 

Writing: YL, TCH; Collection: DEW, DCJ; Lab analysis: YL, KTA, DEW, DCJ; Data Analysis: 18 

YL, KTA, TCH; Project Management: TCH, DCJ  19 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.11.24302582doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.02.11.24302582


Abstract 20 

The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in 21 

sewage is well-established, but the concomitant changes in microbial compositions during the 22 

pandemic remain insufficiently explored. This study investigates the impact of the SARS-CoV-2 23 

virus on microbial compositions in raw sewage, utilizing 16S rRNA sequencing to analyze 24 

wastewater samples collected from six dormitories over a one-year field trial at the University of 25 

Tennessee, Knoxville. The concentration of SARS-CoV-2 RNA was assessed using a reverse 26 

transcription-quantitative polymerase chain reaction. Significant variations in bacterial 27 

composition were evident across the six dormitories, highlighting the importance of 28 

independently considering spatial differences when evaluating the raw wastewater microbiome. 29 

Positive samples for SARS-CoV-2 exhibited a prominent representation of exclusive species 30 

across all dormitories, coupled with significantly reduced bacterial diversity compared to 31 

negative samples. The correlation observed between the relative abundance of enteric pathogens 32 

and potential pathogens at sampling sites introduces a significant dimension to our understanding 33 

of COVID-19, especially the notable correlation observed in positive SARS-CoV-2 samples. 34 

Furthermore, the significant correlation in the relative abundance of potential pathogens between 35 

positive and negative SARS-CoV-2 raw sewage samples may be linked to the enduring effects of 36 

microbial dysbiosis observed during COVID-19 recovery. These findings provide valuable 37 

insights into the microbial dynamics in raw sewage during the COVID-19 pandemic. 38 
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Introduction 39 

The interconnection between sewage and the human gut microbiota has garnered significant 40 

interest, revealing a substantial overlap in microbial composition. Newton et al. (2015) noted that 41 

the microbial composition of sewage, primarily originating from the human gut, comprises a 42 

diverse array of both beneficial and pathogenic species, with bacteria and viruses playing central 43 

roles. Robust evidence consistently supports the notable similarity between the microbial profiles 44 

of raw sewage and the human gut. Cai et al. (2014) emphasized that the total abundance of high-45 

level genera in influent sewage is nearly 50%, similar to that of the human gut, thus highlighting 46 

the human gut as the primary source of bacterial collection in sewage. Newton et al. (2015) 47 

further reported that sequences representing approximately 78% of a stool sample comprised 48 

around 12% of a sewage sample. Extrapolating this ratio to 100%, their estimation suggests that 49 

only 15% of amplicons in a typical sewage sample originate from human stool. However, Fierer 50 

et al. (2022) found that bacteria derived from fecal material constitute a relatively small fraction 51 

of the taxa in collected samples, underscoring the significance of environmental sources in 52 

shaping the sewage microbiome. It is still unclear if raw sewage truly reflects the microbial 53 

composition of the human gut. 54 

Crucially, numerous studies have illustrated that respiratory infections associated with COVID-55 

19 correlate with changes in the composition of the gut microbiota (Gu et al. 2020, Zuo et al. 56 

2020). The dysbiosis of COVID-19 may enhance gut permeability, leading to secondary 57 

infections and organ failure. Simultaneously, disruptions in gut barrier integrity could potentially 58 

facilitate the translocation of SARS-CoV-2 from the lungs to the intestinal lumen (AKTAŞ and 59 

Aslim 2020). Gu et al. (2020) and Zuo et al. (2020) observed that, compared  to fecal samples 60 

from healthy people, fecal samples from COVID-19 patients had significantly reduced bacterial 61 

diversity, a significantly higher relative abundance of opportunistic pathogens and a lower 62 

relative abundance of beneficial symbionts. Liu et al. (2022) even found that gut dysbiosis 63 

persisted even after clearance of SARS-CoV-2 at 6 months. Patients with COVID-19 exhibit 64 

significant alterations in fecal microbiomes, suggesting potential changes in the wastewater 65 

microbiome during the pandemic. Currently, research on microbial compositions in wastewater 66 

with positive and negative SARS-CoV-2 samples remains limited, with Gallardo-Escárate et al. 67 

(2021) being the sole study to explore such dynamics across three sampling communities using 68 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.11.24302582doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.11.24302582


nanopore technology. Their findings highlighted a robust association between the microbiota of 69 

positive SARS-CoV-2 wastewater samples and enteric bacteria. Notably, integrating the 70 

Wastewater-Based Epidemiology tool with metagenomic analysis, employing 16S rRNA 71 

sequencing technology to investigate changes in sewage microbiota during the COVID-19 72 

pandemic, remains an unexplored avenue that warrants further research. 73 

This study employs 16S rRNA sequencing to thoroughly analyze microbial compositions in raw 74 

sewage samples, differentiating between those with positive and negative COVID-19 status. The 75 

primary goal is to identify distinct patterns or shifts in the bacterial community associated with 76 

the presence of the virus. Through the utilization of this technology, the research aims to provide 77 

a nuanced understanding of the dynamics of viral shedding, microbial interactions, and the 78 

overall impact of SARS-CoV-2 on the sewage microbiome over a year-long field trial conducted 79 

in six campus dormitories. Including COVID-19-negative sewage samples as a control allows for 80 

identifying specific changes attributable to viral presence, facilitating the establishment of 81 

correlations between the sewage microbiota and COVID-19 prevalence in human communities. 82 

Essentially, this investigation seeks to address the knowledge gap regarding the interplay 83 

between SARS-CoV-2 and the sewage microbiome, offering valuable insights into the potential 84 

utility of wastewater-based epidemiology for monitoring and assessing COVID-19 prevalence. 85 
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Materials and Methods 86 

Raw Sewage Sampling and Sample Processing 87 

Raw wastewater was systematically collected from six student residence halls on the University 88 

of Tennessee, Knoxville campus, as illustrated in Figure 1. Each of these residential dormitories 89 

accommodated a population of over 400 students, and a detailed summary of their characteristics 90 

is presented in Table 1. Sampling was from access points to the main sewage pipe in the 91 

basement of the building or at the first access point to a raw sewer manhole immediately outside 92 

the building, specifically before the convergence or merging with other sewer conduits. This 93 

sampling initiative occurred from September 14, 2020, to October 11, 2021. 94 

Grab samples (>50 ml) were collected at the manhole using a stainless-steel telescopic rod pole 95 

swivel dipper water swing sampler. Alternatively, samples were obtained from the valve by 96 

submerging a sterile Nalgene bottle into the flowing sewage. Sampling commenced at 8:00 am, 97 

and all collected samples were promptly transported to the BSL-2 laboratory in a cooler with ice. 98 

The transit time was kept to less than 3 h to ensure immediate processing. 99 

Upon reaching the laboratory, sewage samples underwent pasteurization for 2 h at 60°C. 100 

Following pasteurization, centrifugation at 5,000 x g for 10 min occurred, and subsequent 101 

filtration was carried out through sequentially sized 0.45 µm and 0.22 µm nitrocellulose filters. 102 

These filters were individually placed in DNA LoBind tubes and stored at -80°C until DNA 103 

extraction. Concentration was achieved using an Amicon Ultra-15 filtration device, with 104 

centrifugation at either 4,000 x g for 30 min (Swing-arm rotor) or 5,000 x g for 20 min (Fixed-105 

angle rotor) at room temperature. The resulting concentrated solution, approximately 250 μL, 106 

was carefully transferred to 2 mL DNA LoBind tubes. 107 

RNA extraction was performed using the Qiagen viral RNA Mini Kit, following the instructions 108 

of the manufacturer, yielding 60 μL of extracted RNA, with a negative control using 109 

DNase/RNase-free water. Subsequently, the RNA samples were stored at -80°C and subjected to 110 

RT-qPCR analysis within 24 h following extraction (Ash et al. 2023, Li et al. 2023). 111 
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RT-qPCR 112 

To quantify the concentrations of SARS-CoV-2 and PMMoV RNA in each sample, we 113 

employed RT-qPCR. Specifically, we measured SARS-CoV-2 N1 using the TaqPath 1-Step RT-114 

qPCR Master Mix, CG (Thermo Fisher Scientific) on an Applied Biosystems QuantStudios 7 Pro 115 

Real-Time PCR System instrument. Each 20 μL reaction mixture comprised 5 μL of 4X Master 116 

Mix (Thermo Fisher Scientific), 0.25 μL of a 10 μmol/L probe, 1 μL each of 10 μmol/L forward 117 

and reverse primers, 7.75 μL of nuclease-free water, and 5 μL of nucleic acid extract. After 118 

accurate pipetting of reagents into 96-well plates, a 10-second vortex mixing step followed. The 119 

RT-qPCR cycling conditions included an initial uracil-DNA glycosylase incubation for 2 min at 120 

25°C, reverse transcription for 15 min at 50°C, activation of the Taq enzyme for 2 min at 95°C, 121 

and a two-step cycling process involving 3 sec at 95°C and 30 sec at 55°C, repeated for a total of 122 

45 cycles. A positive test result was determined by the presence of an exponential fluorescent 123 

curve intersecting the threshold within 40 cycles (cycle threshold [Ct] <40). 124 

The quantification of PMMoV was executed using the TaqPath 1-Step RT-qPCR Master Mix, 125 

CG (Thermo Fisher Scientific) on a QuantStudios 7 Pro instrument. Each reaction was composed 126 

of 20 μL, including 5 μL of 4X Master Mix from Thermo Fisher Scientific, 0.5 μL of 10 μmol/L 127 

probe, 1.8 μL each of 10 μmol/L forward and reverse primers, 8.9 μL of nuclease-free water, and 128 

2 μL of nucleic acid extract. The reagents were meticulously transferred into 96-well plates using 129 

pipettes and subsequently mixed by vortexing for 10 sec. The thermocycling conditions utilized 130 

in this study were as follows: incubation of uracil-DNA glycosylase for 2 min at 25°C, reverse 131 

transcription carried out for 15 min at 50°C, activation of the Taq enzyme for 10 min at 95°C, 132 

and a two-step cycling process consisting of 30 sec at 95°C followed by 1 min at 60°C, repeated 133 

for a total of 40 cycles. 134 

In each RT-qPCR run, one positive PMMoV control and negative controls, comprising 135 

Mastermix and DNase/RNase-free water, were incorporated. The RT-qPCR reactions were 136 

carried out in triplicate, and the criteria for classifying a sample as positive included the 137 

requirement that all replicates produced positive results, with each individual replicate falling 138 

within the linear range of the standard curve. The N1 standard curve demonstrated a high level of 139 

efficiency, with a value of 94.669% (R2 = 1). The quantification of SARS-CoV-2 RNA was 140 

determined by calculating the average of three replicates of viral copies. The outputs of RT-141 
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qPCR were converted into units of copies per liter. In this study, the detection limit for SARS-142 

CoV-2 and PMMoV was established at 20 and 10 copies per liter, respectively. 143 

DNA Isolation, 16S rRNA Gene Amplification, Sequencing 144 

Before inclusion in the kit, quarter-sections of 0.45 µm and 0.22 µm nitrocellulose filters were 145 

prepared by flame-sterilizing a blade and using ethanol for sterilization. Genomic DNA 146 

extraction was then performed using the FastDNA Spin Kit for Soil (BIO101, Vista, CA, USA), 147 

strictly following the guidelines of manufacturer. Subsequent DNA purification utilized the 148 

SELECT-A-SIZE DNA Clean & Concentrator Kits (Zymo Research, Irvine, CA). The quality of 149 

the extracted DNA was assessed by determining the 260/280 and 260/230 ratios on a NanoDrop 150 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA). 151 

After confirming successful DNA extraction, Polymerase Chain Reaction (PCR) was conducted 152 

on 1–10 μL of the extracted DNA. DNA libraries were prepared following the methodology 153 

outlined by Caporaso et al. (2012). PCR amplification of the V4 region employed Phusion DNA 154 

polymerase (Master Mix; Thermo Fisher Scientific, Waltham, MA) and universal primers 515f 155 

and barcoded 806r, designed to anneal to both bacterial and archaeal sequences. A 12-bp barcode 156 

index on the reverse primer facilitated multiplexing for sequencing analysis. 157 

Subsequently, amplicon quality and size were assessed using an Agilent Bioanalyzer (Agilent 158 

Technologies Santa Clara, CA). Following the protocol of manufacturer, the DNA amplicons 159 

were pooled and quantified with a NEBNext Library Quant Kit for Illumina (New England 160 

Biolabs, Ipswich, MA). Sequencing was performed using a MiSeq V2 kit on an Illumina MiSeq 161 

platform (Illumina, San Diego, CA). 162 

Digital sequence data from the MiSeq underwent processing through the QIIME2 (v1.9) pipeline 163 

on a Linux Server (Caporaso et al. 2010). DADA2 within QIIME2 was employed for denoising, 164 

and fast-join facilitated the joining of paired-end sequences. Subsequent demultiplexing 165 

excluded sequences with a Phred score below 20, and UCHIME identified and removed chimeric 166 

sequences. Genus-level identification of sequences utilized the Silva database, with operational 167 

taxonomic units (OTUs) determined and sample populations normalized by total sequence count 168 

to ascertain the relative abundance of each OTU. 169 
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Data Analysis 170 

Statistical analyses were conducted using R version 4.2.3. Initially, samples were processed by 171 

rarefying OTU tables to the lowest library size across all samples in each student residence hall. 172 

Subsequently, we computed common �-diversity metrics (Observed, ACE, Shannon, Simpson, 173 

InvSimpson, Fisher, Coverage, and PD) and �-diversity metric (Bray-Curtis) using the R 174 

phyloseq package. To assess differences in �-diversity metrics between groups, linear regression 175 

was employed, with semesters included as covariates. For the evaluation of differences in �-176 

diversity metrics between groups, nonmetric-multidimensional scaling (NMDS) was utilized, 177 

and p values for the comparison between groups were determined using permutational 178 

multivariate ANOVA models, which included semesters as covariates. A Pearson Correlation 179 

analysis was undertaken to explore the correlations between various parameters, including the 180 

relative abundance of enteric pathogen and potential pathogens, the relative abundance of enteric 181 

pathogen and potential pathogen in positive and negative SARS-CoV-2 samples, as well as the 182 

relative abundance of potential pathogen in positive and negative SARS-CoV-2 sewage samples. 183 
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Results 184 

Concentration of SARS-CoV-2 in Raw Sewage 185 

The 174 raw sewage samples included in this study were collected from 6 different dormitories 186 

in the same sewage network across the University of Tennessee, Knoxville (Figure 1). Figure 2 187 

depicts the concentrations of SARS-CoV-2 from September 2020 to October 2021 within various 188 

high-density student residence halls. Over the sampling period, SARS-CoV-2 concentrations 189 

were consistently measured at different levels in the respective halls: 3.09±3.46 log10 copies/L 190 

in D1, 2.02±2.19 log10 copies/L in D2, 2.80±3.26 log10 copies/L in D3, 2.97±3.61 log10 191 

copies/L in D4, 2.94±3.30 log10 copies/L in D5, and 2.36±2.71 log10 copies/L in D6. 192 

Furthermore, the positive rates, calculated by dividing the number of positive samples by the 193 

total number of samples and multiplying by 100%, varied across the halls. Specifically, the 194 

positive rates were 70% in D1, 39% in D2, 52% in D3, 20% in D4, 68% in D5, and 37% in D6 195 

(Table 2). These results provide valuable insights into the dynamics of SARS-CoV-2 196 

concentrations and positivity rates within high-density student residence halls during the 197 

specified timeframe. 198 

Characteristics of the predominant flora in different dormitories. 199 

Characterization on phylum, family, and genus level. 200 

The sequences extracted from the samples underwent comprehensive analysis, resulting in the 201 

classification of data into 56 phyla, 145 classes, 315 orders, 548 families, and 1170 genera. 202 

Figure 3 illustrates the relative abundances of the top 10 phyla across six dormitories, revealing 203 

notable variations. The phylum Bacteroidetes was identified as the most abundant across all 204 

sampling sites, with relative abundance ranging from 46.1% to 26.9%. Firmicutes emerged as the 205 

second most abundant phylum in dormitories 1, 2, 3, and 4, with relative abundance varying 206 

from 35.2% to 14.8%. Meanwhile, Proteobacteria emerged as the second most abundant phylum 207 

in dormitories 5 and 6, with relative abundance ranging from 41.3% to 25.4%. Additionally, it 208 

was observed that dormitories 2 and 3 have the same four highest abundance phyla of 209 

Bacteroidetes, Firmicutes, Proteobacteria, and Spirochaetota. Similarly, Dormitories 5 and 6 210 

have the same four highest abundance phyla of Bacteroidetes, Proteobacteria, Firmicutes, and 211 

Campilobacterota. 212 
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Figure 4 highlights the 10 most dominant families, showcasing significant differences among the 213 

six dormitories. Paludibacteraceae and Spirochaetaceae emerged as the most dominant families, 214 

with varying relative abundance in D1, D2, and D3. Interestingly, Bacteroidaceae took 215 

precedence in D4, D5, and D6, with distinct relative abundance up to 12.6%. 216 

The relative abundances of the top 50 genera detected in all dormitory samples are shown in 217 

Figure 5. Moreover, many typical gut bacteria were also found at very high levels in the sewage 218 

such as Bacteroides, Acinetobacter, Prevotella, Pseudomonas, Blautia, Faecalibacterium, 219 

Ruminococcus, Dorea, and others, corresponding to ranks 1, 8, 10, 11, and 21 within the top 50 220 

genera in Figure 5 (Furet et al. 2009, Cai et al. 2014, Bäckhed et al. 2015, Do et al. 2019). 221 

Among the top 50 genera, 14 genera (33.52%) were identified as potential pathogens, including 222 

Bacteroides, Arcobacter, Treponema, Aeromonas, Acinetobacter, Prevotella, Pseudomonas, 223 

Erysipelothrix, Faecalibacterium, Flavobacterium, Ruminococcus, Bifidobacterium, Laribacter, 224 

and Streptococcus (Cai and Zhang 2013, Cai et al. 2014, Do et al. 2019, Oluseyi Osunmakinde et 225 

al. 2019, Poopedi et al. 2023). 226 

In the examination of the top 50 genera, dormitories D1 to D6 exhibited varying relative 227 

abundance of potential pathogens, with 13 (40%), 12 (23%), 11 (18%), 12 (28%), 14 (45%), and 228 

14 (41%) genera recognized as such, respectively (Figure 5). Notably, a substantial number of 229 

these potential pathogens displayed an increased relative abundance in samples from D1, D5, 230 

and D6 compared to other sites. Among the detected enteric pathogens in the top 50 genera were 231 

Arcobacter, Aeromonas, and Laribacter, with total relative abundances of 13.61%, 2.37%, 232 

5.45%, 5.64%, 20.82%, and 9.01% from D1 to D6, respectively. Arcobacter and Aeromonas 233 

were identified across all six dormitories, while Laribacter was exclusively found in D3, D5, and 234 

D6. Furthermore, an observation revealed a correlation between the relative abundance of enteric 235 

pathogen and potential pathogens (Pearson Correlation = 0.842, p = 0.018). Additionally, 236 

Mycobacterium, the most prevalent respiratory tract-associated pathogen, contributed from 237 

0.02% to 0.15% of the total bacterial community across all six dormitories, respectively. 238 

Diversity of bacterial communities 239 

The analysis of the microbiota communities within the collected wastewater samples revealed 240 

significant distinctions across all sampled locations (Figure 6). At the species level, dormitory 6 241 
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(D6) exhibited the highest count of exclusive taxa, totaling 1206, while the other dormitories (D1 242 

to D5) displayed varying counts of exclusive taxa, ranging from 546 to 1081 species. It is 243 

noteworthy that a core microbiome consisting of 286 bacterial species was consistently observed 244 

across all sampled dormitories.  245 

Considerable distinctions were identified in microbiota communities within the collected 246 

wastewater from all sampled locations, as illustrated in Figure 6. Notably, at the species level, 247 

D6 demonstrated the highest count of exclusive taxa, totaling 1206. Conversely, the other 248 

dormitories (D1 to D5) exhibited diverse counts of exclusive taxa, with 1081, 764, 856, 546, and 249 

755 species, respectively. Notably, a core microbiome was observed with 286 bacterial species.  250 

Alpha diversity analysis was employed to assess the diversity and richness of bacterial 251 

communities within the microbiome of six dormitories (Figure 7). A comprehensive comparison 252 

among the six dormitories was conducted using linear regression models, with semester serving 253 

as a covariate. The results showed statistically significant differences in bacterial diversity across 254 

the dormitories. 255 

Figure 8 depicts the clustering of beta diversity, assessed through Bray-Curtis distance metrics, 256 

among the six dormitories. A permutational multivariate ANOVA model, which included 257 

semester as a covariate, demonstrated significant differences in the measured β-diversity metrics 258 

between groups (p < 0.05). 259 

Characteristics of the predominant flora in positive and negative samples 260 

Characterization on phylum, family, and genus level 261 

The microbial composition of various sampling sites was analyzed to determine the abundance 262 

of specific phyla and family, with a focus on the impact of COVID-19 status on the results. 263 

These results showed that the microbial composition of different dormitory locations remains 264 

consistent at the top 10 dominant phyla and family, regardless of the COVID-19 status (Figure 9, 265 

10). 266 

The current study, encompassing multiple dormitories, unveiled several noteworthy distinctions 267 

in the relative abundances of microbial families (Figure 11). Dormitory 1 showed a distinction 268 

between the families Lachnospiraceae and Streptococcaceae. Similarly, dormitory 3 exhibited 269 

significant differences in the relative abundances of Arcobacteraceae, Peptostreptococcaceae, 270 
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Rhodocyclaceae, and V2072-189E03 between COVID-19 positive and negative samples. In 271 

dormitory 4, Peptostreptococcales-Tissierellales displayed significant variation in relative 272 

abundances between the two sample groups. In dormitory 5, Desulfovibrionaceae demonstrated a 273 

significant difference in relative abundances based on COVID-19 status. Lastly, in dormitory 6, 274 

significant differences were observed in the relative abundances of Aeromonadaceae and 275 

Paludibacteraceae between COVID-19 positive and negative samples. These findings underscore 276 

the potential impact of COVID-19 on specific microbial families within the microbiota of 277 

different dormitories, providing valuable insights into the nuanced variations in microbial 278 

composition associated with the viral infection. 279 

The LEfSe analysis was employed to discern and differentiate the microbiome composition 280 

between samples that tested positive and negative for COVID-19 across the six dormitories 281 

(Figure S1). Interestingly, no universal biomarkers were identified across all six dormitories. 282 

Instead, distinct biomarkers were exclusively found in dormitories 3, 4, and 5, suggesting unique 283 

microbial signatures associated with COVID-19 status in these specific dormitory environments. 284 

The present study aimed to analyze the relative abundance of potential pathogen in both SARS-285 

CoV-2 positive and negative samples of the top 50 genera (Figure 12). As depicted in Table 2, 286 

the results revealed a noteworthy correlation between the relative abundance of potential 287 

pathogen in positive and negative samples, with a Pearson Correlation coefficient of 0.918 (p = 288 

0.010). Additionally, the study found a significant correlation between the relative abundance of 289 

enteric pathogen and potential pathogen in positive SARS-CoV-2 samples (Pearson Correlation 290 

= 0.817, p = 0.024), irrespective of relative abundance of potential pathogen in negative SARS-291 

CoV-2 samples.  292 

Diversity of bacterial communities 293 

Our study conducted a comprehensive analysis of samples from different locations, with a 294 

specific focus on viral quantification to distinguish the differences between exclusive and shared 295 

species in wastewaters tested for SARS-CoV-2. We found that samples testing positive for 296 

SARS-CoV-2 demonstrated a higher diversity of taxa compared to their negative counterparts 297 

(Figure 13). The analysis highlighted that exclusive species were most prominently represented 298 

in positive samples for SARS-CoV-2 collected from D1 at 31.87%, while D3 exhibited the 299 

lowest representation at 18.99%. Conversely, negative samples for SARS-CoV-2 were 300 
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associated with exclusive bacterial species in wastewater collected from D3 (18.24%), with D1 301 

displaying the lowest representation at 8.49%. Despite the SARS-CoV-2 status, the analysis 302 

further indicated a low representativity for exclusive bacteria found in other dormitories. 303 

An observation revealed a correlation between the positive rate of sampling sites and the relative 304 

abundance of exclusive species in positive samples (Pearson Correlation = 0.771, p = 0.036). 305 

Additionally, the presence of 1033, 914, 954, 671, 1071, and 917 taxa in both SARS-CoV-2 306 

positive and negative samples from D1 to D6, respectively. These findings collectively 307 

contribute to our understanding of the microbial dynamics associated with SARS-CoV-2 in 308 

wastewater samples across different dormitory locations.  309 

The �-diversity of the microbiome across all locations exhibited a general trend of being higher 310 

in negative samples compared to positive samples. Specifically, the observed species index 311 

showed a significant difference in D5 and D6 (p < 0.05, Figure 14), as determined through linear 312 

regression models that incorporated semester as a covariate. Notably, significant differences in 313 

the measured β-diversity metrics were discerned in D3 and D6 between groups (p < 0.05 for the 314 

Bray-Curtis indices, using permutational multivariate ANOVA with semester as a covariate), as 315 

illustrated in Figure 15.   316 
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Discussion 317 

The identified variations at the phylum, family, and genus levels across the six dormitories shed 318 

light on the geographic differences in bacterial composition in this study (Figure 3, 4, and 5). 319 

The analysis revealed two clusters of community types, as illustrated in Figure 3. Dormitories 2, 320 

3, 1, and 4, organized by the closer relationship of bacterial phyla in each building, exhibited 321 

similar dominance patterns in these phyla, while D5 and D6 exhibited comparable compositions. 322 

The spatial arrangement depicted in the map (Figure 1) highlights that D1, D2, and D4 are in 323 

proximity, D5 and D6 are likewise nearby, and D3 is closer to D5 and D6. This spatial variation 324 

suggests a potential impact of geographic factors on the microbial composition in different 325 

dormitories. This observation aligns with the study by Fierer et al. (2022) finding five clusters of 326 

17 different locations, revealing no strong relationship with the distance between sampling 327 

locations. 328 

The significant alpha and beta diversity further underscore pronounced geographical variations 329 

in microbial communities in this study, aligning with Fierer et al. (2022) findings. Their 330 

emphasis on independently considering spatial variations when assessing the wastewater 331 

microbiome highlights the need to account for the influence of location on microbial diversity. 332 

Their research identified geographic variations in bacterial composition unrelated to sewer 333 

material, sewer depth, or resident human population on the campus. They attributed these 334 

variations to sample pH, with total suspended solids concentrations and sample volume playing a 335 

lesser role. This pH correlation aligns with studies by Fujii et al. (2012) and Lindström et al. 336 

(2005), which demonstrated the close association between pH and shifts in bacterial community 337 

composition in aquatic environments. Despite the detected variations in bacterial composition 338 

across dormitories in our study, the pH did not exhibit significant changes. Future research could 339 

explore specific factors such as organic carbon or nutrient concentrations to better understand the 340 

observed geographic variations in microbial communities.  341 

The analysis of the microbial community in raw sewage yielded results consistent with previous 342 

research, indicating the influence of the human gut bacterial community on the bacterial profile 343 

in raw sewage. Specifically, the phyla Bacteroidota was identified as the most abundant and 344 

variable across samples, aligning with findings from Arumugam et al. (2011). However, a study 345 

by Cai et al. (2014) reported Firmicutes as the most dominant phylum in influent samples, 346 
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asserting its alignment with the human microbiome composition. The findings of may clarify this 347 

discrepancy Turnbaugh et al. (2006) and Clemente et al. (2012), indicating that the gut 348 

microbiota typically showcases dominance of bacteria, particularly from the Bacteroidota and 349 

Firmicutes divisions. Furthermore, Huttenhower et al. (2012) revealed that gut microbiota 350 

relationships were characterized by inverse associations with Bacteroidota, varying from 351 

dominance in some subjects to a minority in others with a greater diversity of Firmicutes. These 352 

nuanced observations highlight the intricate dynamics of the human gut microbiota and 353 

underscore the pivotal roles played by Bacteroidota and Firmicutes in shaping microbial profiles 354 

observed in raw sewage. 355 

The primary objective of our study was to investigate potential changes in wastewater 356 

microbiomes during the pandemic, considering the influence of the human gut bacterial 357 

community on the bacterial profile in raw sewage. This investigation was prompted by existing 358 

literature highlighting significant alterations in fecal microbiomes among individuals with 359 

COVID-19 (Gu et al. 2020, Zuo et al. 2020, Yeoh et al. 2021). The significant differences in 360 

bacterial composition observed across the six dormitories prompted a recommendation for 361 

separate analyses of the 16S rRNA data for each dormitory. This approach aims to mitigate 362 

biases that may arise when combining data from diverse dormitory settings. The prominent 363 

representation of exclusive species in positive samples for SARS-CoV-2 were found across all 364 

six dormitories supports the findings of Gallardo-Escárate et al. (2021). Moreover, the observed 365 

trend of higher �-diversity in the microbiome of negative samples compared to positive samples 366 

across some locations echoes the results reported by Gu et al. (2020) and Yeoh et al. (2021), who 367 

documented a significant decrease in gut microbiota diversity and abundance in COVID-19 368 

patients relative to healthy individuals.  369 

The observed correlation between the relative abundance of enteric pathogen and potential 370 

pathogens at sampling sites adds a significant layer of understanding in the context of COVID-371 

19, particularly highlighting the notable association between the relative abundance of enteric 372 

pathogen and potential pathogen in positive SARS-CoV-2 samples. The presence of three enteric 373 

genera, namely, Arcobacter, Aeromonas, and Laribacter, in our study, commonly residing in the 374 

human intestines and potentially utilizing pathogenic mechanisms to induce gastrointestinal tract 375 

infections, emphasizes the relevance of these microbes in the sewage context during the 376 

pandemic. Notably, the Aeromonas genus ranked as the third leading cause of diarrhea after 377 
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Campylobacter and Salmonella ￼, exhibited a notably high abundance exclusively in D5 378 

(9.09%) and D6 (6.14%) compared to other dormitories, where the abundance ranged from 379 

0.66% to 1.14%. Additionally, two Arcobacter species, A. butzleri, and A. cryaerophilus, are 380 

considered emerging pathogens posing threats to human health, adding depth to discussing 381 

potential pathogenic risks in the sewage microbiome. Additionally, the genus Laribacter, 382 

represented by the species L. hongkongensis, known for its associations with traveler 383 

gastroenteritis and diarrhea (Beilfuss et al. 2015), further contributes to understanding the 384 

microbial landscape in the context of COVID-19. 385 

In the context of the ongoing discourse surrounding COVID-19, an emerging respiratory 386 

infectious disease, the investigation into the presence of Mycobacterium, a medically significant 387 

respiratory tract-associated pathogen, within sewage systems has garnered attention. Notably, 388 

this scrutiny extends across six dormitories, revealing a discernibly lower total abundance of 389 

Mycobacterium in sewage than the prevalent genera identified in the samples. The quantification 390 

of Mycobacterium in our samples aligns with findings from previous studies, providing a basis 391 

for comparative analysis. Cai and Zhang (2013) reported an overall abundance of 392 

Mycobacterium in influent and effluent samples that remained below the threshold of 0.02%. 393 

Numberger et al. (2019) the genus Mycobacterium was observed exclusively in October effluent 394 

samples with a relative abundance of less than 0.02%. The 16S rRNA gene sequences analysis in 395 

our work determined the presence of the bacterial genera but not species. These genera may 396 

contain both pathogenic and non-pathogenic species. Therefore, the identification of pathogens 397 

requires further study. 398 

Our study did not unveil a significant universal biomarker distinguishing positive from negative 399 

SARS-CoV-2 sewage samples across all sampling locations. This contrasts with the findings of 400 

Gu et al. (2020), who identified five biomarkers to differentiate between COVID-19 patients and 401 

healthy individuals. It is essential to note that the absence of SARS-CoV-2 detection in certain 402 

patients may not necessarily signify a complete recovery of their gut microbiota. The restoration 403 

of microbial communities may require an extended period, even when SARS-CoV-2 is not 404 

detectable. This aligns with the observations of Zhang et al. (2023), who documented persistent 405 

dysbiosis for months after the clearance of the virus. Individuals recovered from COVID-19, 406 

when compared to healthy controls, exhibited reduced bacterial diversity and richness at 3 407 

months. This reduction was accompanied by a lower abundance of beneficial commensals and a 408 
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higher abundance of opportunistic pathogens. Hence, the significant correlation in the relative 409 

abundance of potential pathogen between positive and negative SARS-CoV-2 sewage samples in 410 

our study may be attributed to the lingering effects of microbial dysbiosis observed in COVID-411 

19 recovery.  412 
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Conclusion 413 

In conclusion, our study provides valuable insights into the raw sewage microbiota as a 414 

reflection of the gut microbiota during the COVID-19 pandemic and its potential association 415 

with fecal SARS-CoV-2 shedding. The observed significant differences in raw sewage microbial 416 

communities across all sampling sites and the prominent representation of exclusive species in 417 

positive samples for SARS-CoV-2 emphasize the potential of sewage microbiota as an indicator 418 

of viral shedding. Positive samples for SARS-CoV-2 exhibited a significant reduction in 419 

bacterial diversity, highlighting the impact of the virus infection on microbial composition. 420 

These findings introduce a novel and targeted approach for modulating sewage microbiota, 421 

specifically linked to gastrointestinal manifestations, as a strategy for monitoring and predicting 422 

the presence of SARS-CoV-2 in raw sewage. 423 

While our analysis did not uncover a significant universal biomarker distinguishing positive and 424 

negative SARS-CoV-2 raw sewage samples, the observed noteworthy correlation in the relative 425 

abundance of potential pathogens between these samples suggests a potential connection to the 426 

enduring effects of microbial dysbiosis during the recovery phase of COVID-19. Moreover, the 427 

identified correlation between the relative abundance of enteric pathogens and potential 428 

pathogens at sampling sites adds a significant dimension to our understanding of COVID-19, 429 

particularly in the context of the substantial correlation in positive SARS-CoV-2 samples. These 430 

findings underscore the importance of monitoring enteric pathogens in raw wastewater 431 

surveillance systems to comprehend the potential spread of COVID-19 and other infectious 432 

diseases. Such insights carry crucial implications for public health monitoring and management 433 

strategies.  434 
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Table 1. Demography data for D1, D2, D3, D4, D5, and D6. 599 

  600 

Sampling site Sampling Point Gender Student Number 

D1 Direct Dispense from the valve Male 387-504 

D2 Direct Dispense from the valve Female 469-531 

D3 Direct Dispense from the valve Mix 254-279 

D4 Direct Dispense from the valve Mix 529-637 

D5 Direct Dispense from the valve Mix 10-672 

D6 Direct Dispense from the valve Mix 580-672 
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Table 2. Raw wastewater data information for D1, D2, D3, D4, D5, and D6. 601 

 602 
Dorms pH Positive Rate 

Relative abundance of potential Pathogen  

Positive SARS-CoV-2 Sample Negative SARS-CoV-2 Sample 

D1 6.71-9.08 70.00% 40.04% 40.35% 

D2 6.83-8.27 39.00% 21.80% 29.37% 

D3 6.51-8.97 52.00% 17.58% 13.88% 

D4 6.27-9.01 20.00% 30.63% 24.11% 

D5 6.38-8.95 68.00% 43.49% 45.17% 

D6 5.72-8.63 37.00% 41.30% 45.64% 
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Figure Legends 603 

Figure 1. Map of the sampling locations on the University of Tennessee-Knoxville campus. 604 

Figure 2. Experimental design and sampling points/times for microbiome sequencing. SARS-605 

CoV-2 concentrations are indicated as yellow lines. The yellow points at 10 copies/L represent 606 

negative samples. The sequencing runs are indicated as black points. The virus load was 607 

estimated by qPCR in untreated wastewater from different dormitories: D1, D2, D3, D4, D5, and 608 

D6. The study was conducted from Sep 2020 to Oct 2021. 609 

Figure 3. Relative abundances of the top 10 dominant phyla in 6 dormitories. 610 

Figure 4. Relative abundances at family levels for six dormitories. 611 

Figure 5. Relative abundances of top 50 genera. 612 

Figure 6. Venn diagram of exclusives and shared bacteria among the 6 dormitories. 613 

Figure 7. Diversity index in 6 dormitories. The box-and-whisker plots show the mean (diamond), 614 

median (middle bar), first quartile (lower bar), third quartile (upper bar), minimum observation 615 

above the lowest fence (lower whisker), and maximum observation below the upper fence (upper 616 

whisker) of common �-diversity metrics for each group. The P values for the comparison 617 

between groups using linear regression models including semester as covariate is also shown. 618 

Figure 8. The scatter plots show each participant’s microbial community composition (small 619 

circles) by group, as well as each group’s centroid (large circles) and 95% CI ellipses. The 620 

scatter plots were generated using Principal Coordinates Analysis (PCoA) ordination based on 621 

common β -diversity metrics. For ease of visualization, only 2 dimensions were used. The P 622 

values for the comparison between groups using permutational multivariate ANOVA models 623 

including semester as covariate is also show. 624 

Figure 9. Relative abundances of the top 10 dominant phyla in 6 dormitories with positive and 625 

negative SARS-CoV-2 samples. 626 

Figure 10. Relative abundances of the top 10 dominant family in 6 dormitories with positive and 627 

negative SARS-CoV-2 samples. 628 

Figure 11. Significant changes at family levels with positive and negative SARS-CoV-2 samples 629 

in 6 dormitories. 630 
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Figure 12. Relative abundances of top 50 genera and potential pathogens with positive and 631 

negative SARS-CoV-2 samples in 6 dormitories. The genera are listed from the highest relative 632 

abundance (top) to the least relative abundance (bottom). The pathogens are marked with an 633 

orange box around their name. 634 

Figure 13. Venn diagram of exclusives and shared bacteria with positive and negative SARS-635 

CoV-2 samples in the 6 dormitories. 636 

Figure 14. Diversity index with significant difference between the positive and negative SARS-637 

CoV-2 samples in 6 dormitories. The box-and-whisker plots show the mean (diamond), median 638 

(middle bar), first quartile (lower bar), third quartile (upper bar), minimum observation above the 639 

lowest fence (lower whisker), and maximum observation below the upper fence (upper whisker) 640 

of common �-diversity metrics just for significant group. The P values for the comparison 641 

between groups using linear regression models including semester as covariate is also shown.  642 

Figure 15. The scatter plots show each participant’s microbial community composition (small 643 

circles) by D4 and D6, as well as their centroid (large circles) and 95% CI ellipses. The scatter 644 

plots were generated using Principal Coordinates Analysis (PCoA) ordination based on common 645 

b-diversity metrics. For ease of visualization, only 2 dimensions were used. The P values for the 646 

comparison between groups using permutational multivariate ANOVA models including 647 

semester as covariate is also shown. 648 

Figure S1. Histograms of linear discriminant analysis (LDA) effect size (LEfSe) comparison 649 

between positive and negative SARS-CoV-2 samples microbiota at the genus level in D3, D4 650 

and D5. Log-level changes in LDA score are displayed on the x axis 651 
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